Persistent competition among stem cells and their daughters in the Drosophila ovary germline niche.

نویسندگان

  • Christa Rhiner
  • Begoña Díaz
  • Marta Portela
  • Juan F Poyatos
  • Irene Fernández-Ruiz
  • Jesús M López-Gay
  • Offer Gerlitz
  • Eduardo Moreno
چکیده

Cell competition is a short-range cell-cell interaction leading to the proliferation of winner cells at the expense of losers, although either cell type shows normal growth in homotypic environments. Drosophila Myc (dMyc; Dm-FlyBase) is a potent inducer of cell competition in wing epithelia, but its role in the ovary germline stem cell niche is unknown. Here, we show that germline stem cells (GSCs) with relative lower levels of dMyc are replaced by GSCs with higher levels of dMyc. By contrast, dMyc-overexpressing GSCs outcompete wild-type stem cells without affecting total stem cell numbers. We also provide evidence for a naturally occurring cell competition border formed by high dMyc-expressing stem cells and low dMyc-expressing progeny, which may facilitate the concentration of the niche-provided self-renewal factor BMP/Dpp in metabolically active high dMyc stem cells. Genetic manipulations that impose uniform dMyc levels across the germline produce an extended Dpp signaling domain and cause uncoordinated differentiation events. We propose that dMyc-induced competition plays a dual role in regulating optimal stem cell pools and sharp differentiation boundaries, but is potentially harmful in the case of emerging dmyc duplications that facilitate niche occupancy by pre-cancerous stem cells. Moreover, competitive interactions among stem cells may be relevant for the successful application of stem cell therapies in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary.

The Drosophila ovariole tip produces new ovarian follicles on a 12-hour cycle by controlling niche-based germline and follicle stem cell divisions and nurturing their developing daughters. Static images provide a thumbnail view of folliculogenesis but imperfectly capture the dynamic cellular interactions that underlie follicle production. We describe a live-imaging culture system that supports ...

متن کامل

An epithelial niche in the Drosophila ovary undergoes long-range stem cell replacement.

Adult epithelial stem cells are thought to reside in specific niches, where they are maintained by adhesion to stromal cells and by intercellular signals. In niches that harbor multiple adjacent stem cells, such as those maintaining Drosophila germ cells, lost stem cells are replaced by division of neighboring stem cells or reversion of transit cells. We have characterized the Drosophila follic...

متن کامل

Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary.

The Drosophila ovary is an attractive system to study how niches control stem cell self-renewal and differentiation. The niche for germline stem cells (GSCs) provides a Dpp/Bmp signal, which is essential for GSC maintenance. bam is both necessary and sufficient for the differentiation of immediate GSC daughters, cystoblasts. Here we show that Bmp signals directly repress bam transcription in GS...

متن کامل

Drosophila ataxin 2-binding protein 1 marks an intermediate step in the molecular differentiation of female germline cysts.

In the Drosophila ovary, extrinsic signaling from the niche and intrinsic translational control machinery regulate the balance between germline stem cell maintenance and the differentiation of their daughters. However, the molecules that promote the continued stepwise development of ovarian germ cells after their exit from the niche remain largely unknown. Here, we report that the early develop...

متن کامل

Clonal expansion of ovarian germline stem cells during niche formation in Drosophila.

Stem cell niches are specific regulatory microenvironments formed by neighboring stromal cells. Owing to difficulties in identifying stem cells and their niches in many systems, mechanisms that control niche formation and stem cell recruitment remain elusive. In the Drosophila ovary, two or three germline stem cells (GSCs) have recently been shown to reside in a niche, in which terminal filamen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 136 6  شماره 

صفحات  -

تاریخ انتشار 2009